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ABSTRACT

Motivation: Recent experimental advancements allow determining

positions of nucleosomes for complete genomes. However, the result-

ing nucleosome occupancy maps are averages of heterogeneous cell

populations. Accordingly, they represent a snapshot of a dynamic

ensemble at a single time point with an overlay of many configurations

from different cells. To study the organization of nucleosomes along

the genome and to understand the mechanisms of nucleosome trans-

location, it is necessary to retrieve features of specific conformations

from the population average.

Results: Here, we present a method for identifying non-overlapping

nucleosome configurations that combines binary-variable analysis and

a Monte Carlo approach with a simulated annealing scheme. In this

manner, we obtain specific nucleosome configurations and optimized

solutions for the complex positioning patterns from experimental data.

We apply the method to compare nucleosome positioning at tran-

scription factor binding sites in different mouse cell types. Our

method can model nucleosome translocations at regulatory genomic

elements and generate configurations for simulations of the spatial

folding of the nucleosome chain.

Availability: Source code, precompiled binaries, test data and a web-

based test installation are freely available at http://bioinformatics.

fh-stralsund.de/nucpos/
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Supplementary Information: Supplementary data are available at
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1 INTRODUCTION

The DNA of eukaryotic organisms is wrapped around a histone

octamer, forming nucleosomes, the basic DNA packing unit of

chromatin. Nucleosomes can impede the binding of transcription

factors to DNA. Therefore, the positions of nucleosomes control

local DNA accessibility and can directly affect the readout of

DNA sequence information at regulatory genomic elements,

thus regulating gene expression.
The genome-wide study of nucleosome positions has beenmade

possible by high-throughput DNA sequencing techniques that

identify the nucleosomal DNA isolated after digestion of the

linker DNA between nucleosomes with micrococcal nuclease

(MNase-seq) (Zhang and Pugh, 2011). However, obtaining nu-

cleosome positions based on theseMNase-seq data is fraught with

difficulties: nucleosome positions have an intrinsic biological vari-

ability. Some nucleosomes, such as the þ1 nucleosome at the

transcription start site, are known to be positioned with high pre-

cision in yeast (Zhang et al., 2011), but the positions of other

nucleosomes can vary substantially (Valouev et al., 2008). In add-

ition, the results reflect the experimental methodology used. First,

although MNase preferentially digests the linker DNA between

the nucleosomes, the nucleosomal DNA fragments obtained in

thismanner display some length variation from the precise bound-

aries of the nucleosome. Second, the proportion of the nucleo-

somalDNA fragments that can be identified is affected byMNase

concentration and incubation time (Allan et al., 2012; Chung

et al., 2010; Zhang et al., 2009). Third, the experiments probe a

population of typically 105 to 107 cells. Each cell contributes its

individual nucleosome configuration to this average, which is po-

tentially incompatible with other configurations. Accordingly, ex-

perimental nucleosome occupancy maps contain overlapping and

ambiguous nucleosome positions at many locations.
Several approaches and tools have been proposed to extract

nucleosome positions from MNase-seq data, such as the follow-

ing: peak calling on smoothed coverage data (Albert et al., 2008;

Flores and Orozco, 2011; Zhang et al., 2008;), hidden Markov

models (Lee et al., 2007; Yassour et al., 2008), template filtering

(Weiner et al., 2010), mixturemodels (Polishko et al., 2012; Zhang

et al., 2012) and sliding window statistics (Becker et al., 2013;

Nellore et al., 2012). Many of these approaches need an elaborate

parameterization or cannot extract non-overlapping nucleosome

configurations and decide between overlapping peaks.
The sole identification of local occupancy maxima determines

the average nucleosome positions of a cell ensemble but does not

cope with the sterical incompatibilities arising from averaging

many, usually unsynchronized cells. If different configurations

lead to overlapping occupancy peaks, it is impossible to represent

the data with a single configuration of non-overlapping

nucleosomes.

Here, we address these issues with two approaches going

beyond peak calling. We apply a binary-variable approach that

generates an ensemble of nucleosome configurations that, when

combined with each other, reproduce the input data with*To whom correspondence should be addressed.
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minimal error. Ambiguous peak data can be dissected into
source components, including non-overlapping nucleosome
configurations. This allows quantification of the dynamics of

nucleosome positioning and of the relative occlusion of DNA
by nucleosomes.
For some applications, like 3D modeling of the nucleosome

chain or combinatorial transcription factor binding, a single
optimal configuration of non-overlapping nucleosomes is desir-
able, even though the data are ambiguous. We address this by

applying a Metropolis Monte Carlo (MMC) algorithm that gen-
erates a dynamic population of non-overlapping nucleosomes.
Our simulation algorithm yields an ensemble of nucleosome

configurations that reproduces the distribution of the input
data. To find an optimized placement of nucleosomes, we com-
bine Monte Carlo simulation with a simulated annealing

protocol.
Our approach compares favorably to existing peak-calling

methods and it was applied to the analysis of promoter and

enhancer regions in mouse embryonic stem cells (ESCs), and
neural progenitor cells (NPCs) as well as embryonic fibroblasts

(MEFs) derived from these (Teif et al., 2012). The three cell types
have identical genomes but differ in their differentiation state.
Comparing them by using our method allowed quantification of

differences in nucleosome patterns and dynamics at binding sites
for transcription factors that have important roles in cell differ-
entiation. Furthermore, we analyzed the nucleosome density at

the Samd4 locus for the three cell types, as an example of a gene
that shows changes in gene expression during differentiation.

2 METHODS

2.1 Binary-variable analysis of overlapping

nucleosome populations

Positioning data from MNase-seq experiments represent an overlay of

different nucleosome populations. Hence, the MNase-seq data can be

imagined as a combination of different non-overlapping nucleosome con-

figurations for the same locus. We aimed to dissect the overlay into single

nucleosome configurations and quantify their occurrence such that their

combination reproduces the experimental distribution with minimal

error.

In a preparatory step, fragments of nucleosomal DNA from mapped

paired-end reads (Fig. 1a) are transformed into occupancy data. The

number of read centers is counted per base pair, smoothed with a

Gaussian kernel and normalized (Fig. 1b). In the next step, we identify

all peaks in the occupancy data. A peak is defined by having a greater

occupancy value than the two neighboring positions. Every peak is

assumed to be a potential nucleosome center. In a subsequent step, clus-

ters of overlapping peaks are identified. A cluster is defined as a sequence

of peaks that are connected by an overlap between neighboring peaks.

Two peaks are considered to overlap if their peak-to-peak distance is

5147bp. A cluster comprising n peaks can be represented by a vector

~c ¼ c1, c2, c3, . . . , cn, with ci being the location of the i-th peak in the

cluster. Owing to steric effects, it is not possible that all peaks of a clus-

ter are populated by nucleosomes at the same time. Therefore, we gen-

erate different sterically possible configurations of nucleosomes for a

cluster (Fig. 2). A configuration can be represented as vector
~k ¼ k1, k2, k3, . . . , kn ki 2 f0, 1g (Fig. 1c). A nucleosome at position ci
is represented as ki¼ 1, whereas ki¼ 0 denotes a nucleosome-free

position. By a recursive procedure, we create all possible configurations

containing only non-overlapping nucleosomes (Fig. 2). Additionally, we

apply the constraint that each configuration has to be maximally

populated, that is, no further nucleosome can be added without produ-

cing an overlap. The m different configuration vectors can be combined

to a matrix K with m rows and n columns.

After identifying all sterically possible nucleosome configurations, we

compute the proportion of the individual configurations with respect to

Fig. 1. Analysis of overlapping nucleosome populations. (a) Mapped

paired-end fragments of nucleosomal DNA. (b) Reads are transferred

into frequencies of nucleosomal centers, smoothed with a Gaussian

kernel and normalized to probabilities (solid line) of nucleosome centers.

The peaks (dashed lines) are overlapping and form a connected cluster of

four potential nucleosome positions. (c) Configuration matrix of the clus-

ter; value 1 marks a nucleosome; value 0 represents an empty position.

(d) Nucleosome configurations according to the matrix in (d). Each row

of rectangles represents a particular nucleosome configuration. The row

height corresponds to the contribution of the configuration to the overall

occupancy. The width of a rectangle is constantly 147bp. (e) Peak heights

from the experimental data (left bar) and reconstructed (right bar) from

nucleosome configurations in (d). The difference between experimental

and reconstructed peak height gives the error of the analysis

Fig. 2. Recursive construction of nucleosome configuration during the

binary-variable analysis. The cluster shown in Figure 1 has four potential

nucleosome positions. Each position has two different states: occupied by

a nucleosome (ki¼ 1) and empty (ki¼ 0), yielding a total of 24 different

configurations. Only three configurations (paths along gray nodes) fulfill

the constraints of having no overlapping nucleosomes and being max-

imally populated. The result set can be represented as a binary matrix

(Fig. 1c)

2381

Modeling nucleosome position distributions

,
peak 
,
paired 
a third
smaller than
therefore 


the original peak heights. The n individual peak heights of a cluster can be

represented by a vector ~h ¼ h1, h2, h3, . . . , hn. Given that occupancy data

are an overlay of different configurations, the contribution of the indi-

vidual configurations should ideally sum to the original peak heights ~h:

~h ¼ KT~s ð1Þ

where ~s is a vector of the size m, with sj as the contribution of the j-th

configuration to the overall occupancy. The number of configurations m

is smaller or equal to the number of peaks n. When m¼ n, the equation

can be solved unambiguously. When m5n, Equation (1) is over-deter-

mined and can, in most cases, only be solved with a certain error. We

apply the Lawson–Hanson implementation of the non-negative linear

least square method (Lawson and Hanson, 1995) from R-package nnls

(Mullen and van Stokkum, 2012) to solve Equation (1) (Fig. 1d).

Importantly, this method prevents negative coefficients, avoiding non-

reasonable negative contributions. However, the value 0 is allowed,

implying that a certain configuration was dismissed. After computing

the relative contribution ~sj of each configuration, the deviation between

original and reconstructed data can be computed (Fig. 1e). The number

of configurations with a value sj40 gives a measure for the number of

possible nucleosome configurations and the dynamics within the cluster.

2.2 Monte Carlo simulation of nucleosome populations

The binary-variable analysis of nucleosome populations presented here

yields a weighted set of possible nucleosome configurations for clusters of

overlapping nucleosomes. However, for some applications, a single con-

figuration of non-overlapping nucleosomes is needed, ignoring ambiguity

from experimental data. We developed a simulation approach based on

an MMC protocol combined with simulated annealing to retrieve a single

optimized solution from the experimental data.

Each simulation starts with an interval of nucleosome-free DNA.

During the simulation, the initially nucleosome-free configuration is

altered randomly by so-called Monte Carlo moves that add, delete or

slide nucleosomes (Fig. 3). Each nucleosome occupies an interval of

147bp on the DNA and excludes the binding of other nucleosomes

within its boundaries.

The MMC algorithm comprises three essential steps (Binder and

Heermann, 2010):

(i) Alter the nucleosome configuration by a Monte Carlo move

(ii) Compute the energy difference �E between new and old

configuration

(iii) Accept the new configuration with the probability

min[1, exp(–�E/kBT)]; step back to (1).

We derive the energy function E used in step (2) from experimental

data (Fig. 4). The starting point is, as described earlier in the text, frag-

ments of nucleosomal DNA (Fig. 4a) taken from mapped paired-end

reads. In the first step, input data are converted into a frequency distri-

bution of nucleosome centers with base pair resolution (Fig. 4b). The

nucleosome centers, assumed to be in the middle of a fragment, are

counted for every base pair. Because the real position of the nucleosome

center is unknown, a smoothing with a Gaussian kernel is then applied to

the frequency distribution of nucleosome centers. A normalization step

then transforms the smoothed frequency function into a probability func-

tion for nucleosome centers with values between 0 and 1. The MMC

simulation is based on Boltzmann statistics. Considering a Boltzmann

ensemble, the probability and the energy of a state are connected.

Because we are only interested in energy differences, we derive the

energy Ei from the Boltzmann factor (Padinhateeri and Marko, 2011):

Ei ¼ �kBT ln Pi ð2Þ

where Pi is probability of finding a nucleosome center at base pair i, kB
the Boltzmann constant and T the temperature.

The MMC criterion in step (3) ensures that genomic positions are

populated with nucleosomes according to the input distribution from

MNase-seq experiments (Supplementary Fig. S1). We additionally intro-

duced a chemical potential to enforce the binding of nucleosomes:

Ei ¼ �kBT ln Pi þ�N� ð3Þ

where �N is the change in the number of nucleosomes. The potential

gives a constant energetic reward � for every added nucleosome and an

energetic penalty for every removed nucleosome. Nevertheless, genomic

positions with low probability remain nucleosome-free owing to their

unfavorable overall energy. The MMC algorithm produces a statistical

ensemble of possible nucleosome populations. Pseudo-random numbers

were generated using the Mersenne Twister algorithm (Matsumoto and

Nishimura, 1998).

2.3 Simulated annealing for an optimized nucleosome

placement

The MMC algorithm can be combined with a simulated annealing

scheme to search for a single optimized solution of the nucleosome

positioning problem. In this case, the simulation starts at a high tempera-

ture, causing the nucleosome population configurations to be highly

dynamic. Over the simulation run, the temperature is gradually reduced

with exponential decay. At low temperatures, the annealing process re-

sembles an energy optimization because nucleosomes are allowed to

move only to more favorable positions (Fig. 4c). The final nucleosome

configuration of the annealing run represents the result of nucleosome

positioning.

Fig. 4. Steps of the MMC simulation. (a) Intervals of nucleosomal DNA

from mapped paired-end reads. (b) Reads are transferred into frequencies

of nucleosomal centers (small spikes), smoothed with a Gaussian kernel

and normalized to probabilities of nucleosome centers (solid black line).

(c) Nucleosome (ellipses) positions after simulated annealing

Fig. 3. Monte Carlo moves that are applied to alter the nucleosome

configuration: (a) add, (b) delete, (c) slide and (d) pair slide
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3 RESULTS

We analyzed experimental nucleosome maps in mouse ESCs, as

well as NPCs derived from these and MEFs for the same mouse

strain (Teif et al., 2012). In a first step, we identified non-over-

lapping nucleosome configurations from the experimental data

as described in Section 2.1. We weighted the contribution of each

nucleosome configuration using a least squares method. Based

on the weighted configurations, we determined the relative

occlusion of DNA with nucleosomes and characterized the

dynamics of nucleosome positioning at particular genomic

features.

3.1 Quantifying accessibility changes at transcription

factor binding sites during cell differentiation

The binary-variable analysis described in Section 2.1 yields the

proportion of the overall occupancy made up from each individ-

ual nucleosome configuration. This enables quantification of the

relative occlusion of DNA by nucleosomes. We focused on

transcription factor binding sites in promoter and enhancer

regions that were determined previously by chromatin immuno-

precipitation in mouse ESCs (Chen et al., 2008). For the analysis,

we evaluated the center of a given transcription factor binding

site and computed the percentage of weighted configurations,

which occlude the binding site with a nucleosome. In contrast

to the occupancy, which was normalized globally, this relative

occlusion value refers to nucleosome configurations within one

cluster of overlapping peaks. We found significant differences in

the relative occlusion among the three cell lines (Fig. 5 and

Supplementary Fig. S2). For the example shown in Figure 5,

some transcription factor binding sites were found to be fully

buried in a nucleosome in all configurations (Fig. 5b), whereas

others were fully exposed (for example the STAT3 site, Fig. 5a).

Furthermore, the accessibility of transcription factor binding

sites showed large variations between the three cell types at

some other sites: for example, the Tcfcp2l1 site in the enhancer

region studied had a medium accessibility in ESCs and NPCs but

was completely occluded in MEFs (Fig. 5b).

3.2 Computing stringency of nucleosome positioning to

map large-scale nucleosome occupancy changes

Ametric introduced by Valouev et al. quantifies the stringency of

positioning based on the number of overlapping nucleosome pos-

itions (Valouev et al., 2011). Here, we used the number of unique

and incompatible nucleosome configurations as a measure of the

dynamics of a particular locus. We quantified stability versus

flexibility in the nucleosome positions by calculating a stringency

value S:

S ¼ 1=nS ð4Þ

where nS is the number of nucleosome configurations with

a value si40 (Section 2.1). A stringency of S¼ 1 describes a

configuration with stably positioned nucleosomes, whereas a

value of 0.25 means that four different nucleosome configur-

ations coexist in a given genomic region. Thus, low stringency

values indicate ‘mobile nucleosome hot spots’, where nucleo-

somes can be arranged in many different configurations. When

analyzing the three different cell differentiation states in this

manner, we found regions with similar stringency patterns as

well as regions with significant differences (Fig. 6).
This analysis performed a measurement of heterogeneity

regardless of its source. To subtract out variance that originates
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Fig. 5. Weighted nucleosome configurations (rectangles) for three

differentiation states of mouse cells. The depicted locus contains binding

sites for various transcription factors (ellipses) that are important in cell

differentiation. The relative occlusion of the binding site by nucleosomes

is shown as a percentage next to the transcription factor. Error bars

indicate the deviation between experimental and reconstructed peak

height

Fig. 6. Positioning stringency for the three differentiation states of mouse

cells. Bottom panel shows the location of predicted repeats [from the

UCSC genome browser (Kent et al., 2002)]. Raw data were smoothed

with a sliding average (window size¼ 1000bp). The number of individual

nucleosome configurations can vary dramatically between the cell lines.

See for example the arrows in the region of LINE repeats
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from experimental bias, additional information is required, e.g.
coverage maps from MNase-digested naked DNA or synchro-
nized cells.

3.3 Applying the simulated annealing method to the

Samd4 locus

The MMC approach was implemented in our open source
software tool NucPosSimulator. As described in Section 2.2, it
generates a dynamic nucleosome population by applying random

Monte Carlo moves. The total number of positioned nucleo-
somes is variable and depends on the experimentally determined

nucleosome occupancy, which enters into the energy function
(Section 2.2). Each simulation run started with nucleosome-free
DNA. Thus, in the first part of the simulation, the number of

nucleosomes increased rapidly. After the equilibration phase, the
frequency of adding and removing events was balanced and the

number of nucleosomes fluctuated around a stable value.
Nucleosomes were allowed to move around and populate all
positions that were covered by reads of nucleosomal DNA. In

the simulation run, the algorithm generates a statistical ensemble
of possible solutions for the nucleosome positioning problem. To
produce a single solution, we applied a simulated annealing

scheme. During the simulations, the temperature was continu-
ously decreased to ‘freeze’ the nucleosome population (Fig. 7).

The annealing yielded a configuration that was optimized in
terms of nucleosome density as well as fitting the experimental
occupancy data. We performed a simulated annealing procedure

for the nucleosomes occupancy data from the three mouse cell
lines (Fig. 8) and analyzed the nucleosome maps of the Samd4

locus, with 300 kb length including the gene locus itself and
flanking DNA up- and downstream. Simulation parameters
are listed in Supplementary Table S1. We found 1420, 1476

and 1513 nucleosomes for ESCs, MEFs and NPCs, respectively.
Dividing by the locus length yielded a nucleosomal repeat length
(NRL) of 211, 203 and 198bp, respectively. This is slightly lower

than the genome-wide global average, which yielded NRLs of
186–193bp (Teif et al., 2012). The latter is based on a region of

up to �10 nucleosomes and includes non-genic regions.
Furthermore, local variations from the global average are
expected so that the NRL values determined for the Samd4 are

well within the values expected from the experiments. Our
approach led to a higher number of nucleosomes for a single

configuration than a best-peak-first peak-calling approach.
However, a high number of detected nucleosomes is only mean-
ingful in combination with sufficient accuracy, which we

validated in the next steps.

3.4 Comparison with peak-calling approaches

As explained in the Introduction, peak-calling approaches

address the problem of finding the ensemble-average nucleosome
positions, which is different from the problem of finding the most
probable nucleosome configuration in a single cell addressed

here. Nevertheless, a comparison of our method with peak-call-
ing approaches is instructive. As a benchmark, we compared our

NucPosSimulator software with the peak-calling tool
PeakPredictor from the GeneTrack project (Albert et al., 2008)
and the recently published positioning tools nucleR (Flores and

Orozco, 2011) and NOrMAL (Polishko et al., 2012). We used the

Samd4 locus as a test case and analyzed nucleosome positions

from the ESC dataset (Table 1). The output of all tools is af-

fected by their parameterization. For PeakPredictor, we used two

different smoothing factors and a peak-to-peak distance of

147 bp to prevent overlapping peaks. NucPosSimulator was

used with its default smoothing factor of 20bp and a nucleosome

size of 147 bp. The tool nucleR does not provide a peak priori-

tization strategy, and can thus return peaks from overlapping

nucleosomes. However, the output contains a score for each

Fig. 7. A simulated annealing run. (a) The occupancy data that were used

to derive the energy function. (b) Snapshots of the nucleosome population

during a simulations run. Each row of rectangles represents one config-

uration. Simulation starts with naked DNA at step 0 and stops at a stable

nucleosome configuration. (c) Annealing scheme: the temperature de-

creases gradually from 600K to 0.1K, at which point the nucleosome

population freezes

Fig. 8. Nucleosome positions after a simulated annealing run. Ellipses

indicate nucleosome positions for (a) ESC, (b) MEF and (c) NPC cell

lines. The nucleosomes are not always located at peak positions, but

rather are located such that the overall energy of the system is optimized
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called peak. For comparison reasons, we used this quality value

to sort the peaks and called the best peaks first while excluding

less significant peaks in a neighborhood of 147 bp. The tool

NOrMAL was originally developed to derive nucleosome posi-

tions from single-end reads. We transformed our paired-end data

back to single-end data and performed the analysis with

NOrMAL in two setups, the first allowing 35% overlap between

nucleosomes and the second allowing no overlap. The analysis

with NucPosSimulator yielded the largest number of positioned

nucleosomes (Table 1), which is in better agreement with the

experimentally determined nucleosome density (Section 3.3)

than results from other tools.
In addition, we used synthetically generated nucleosome maps

to assess accuracy and number of positioned nucleosomes sim-

ultaneously and compared the results with nucleR and

PeakPredictor (Table 2). Synthetic nucleosome maps were

sampled after addition of noise to generate more realistic data.

A part of the nucleosome maps was generated with the nucleR-

package (for details see Supplementary Table S2). In regularly

spaced nucleosome sets with no overlap, all tools detected every

nucleosome with high accuracy. In highly overlapping nucleo-

some configurations (e.g. the Samd4 dataset or set 5, Table 2),

the simulated annealing had clear advantages over the best-peak-

first strategies, concerning the number of detected nucleosomes,

while keeping a high accuracy.

Figure 9 summarizes the characteristics of the different

nucleosome positioning strategies based on a synthetic

nucleosome map. The binary-variable analysis recovers the

source components within clusters of overlapping nucleosomes.

NucPosSimulator generates an optimized non-overlapping nu-

cleosome configuration from ambiguous experimental data.

The solution is optimized to the following criteria: maximal

number of nucleosomes and good compliance with the input

distribution, i.e. accuracy. Best-peak-first strategies focus locally

on the highest peaks but dismiss relevant peaks in the neighbor-

hood that would contribute to an optimal overall solution.

Our simulation approach is suited for genomic regions up to

several mega base pairs (Mb). In contrast to the other tools

mentioned, it is currently too computationally intensive to be

applied to larger genomic regions. However, in many instances

it is feasible to separate large genomic areas into smaller parts

(Teif and Rippe, 2012). Regions kept free of nucleosomes by, for

example, the binding of CTCF (Cuddapah et al., 2009; Fu et al.,

2008) act as insulators, preventing steric interactions between

nucleosomes. Also, chromatin domains of �1Mb apparent in

high-resolution microscopy and by in situ cross-linking are func-

tional units (Cremer and Cremer, 2001; Müller et al., 2004).

Thus, smaller genomic regions could be simulated independently

and in parallel to reduce computation time. Furthermore, in

many instances it is important to calculate the nucleosome dis-

tribution at a single enhancer/promoter.
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Fig. 9. Comparison of nucleosome positioning strategies for a syn-

thetic nucleosome map with overlapping nucleosomes. (a) Short-read

data comprising three different nucleosome populations. (b) Occupancy

function derived from short-read data. (c) Result of a binary-variable

analysis. Clusters of overlapping nucleosome peaks were dissected

into their source components. (d) Non-overlapping nucleosome pos-

itions computed by NucPosSimulator. (e) Results of a best-peak-first

strategy

Table 2. Analysis of synthetic nucleosome maps with NucPosSimulator, nucleR and PeakPredictor

Synthetic nucleosome map (original number of nucleosomes) NucPosSimulator nucleR PeakPredictor

100 regularly spaced 100 (0.9 bp) 99 (1.1 bp) 100 (0.8 bp)

100 regularly spaced, 50 phase shifted 100 (1.6 bp) 75 (1.1 bp) 65 (0.9 bp)

150 randomly positioned 85 (4.4 bp) 74 (2.8 bp) 75 (3.1 bp)

100 regularly spaced, 10 removed, 50 randomly positioned 93 (5.2 bp) 90 (4.3 bp) 90 (4.4 bp)

100 regularly spaced, 10 removed, 100 randomly positioned 96 (6.8 bp) 89 (5.7 bp) 86 (5.5 bp)

Note: Columns 2–4 show the number of positioned nucleosomes and mean deviations between detected positions and original positions (value in brackets).

Table 1. Comparison of tools for nucleosome positioning

Positioning tool Number of nucleosomes

NucPosSimulator (smoothing factor 20) 1420

PeakPredictor (smoothing factor 10) 1276

PeakPredictor (smoothing factor 20) 1237

nucleR (non-overlapping nucleosomes) 1315

NOrMAL (max overlap 35%) 832

NOrMAL (no overlap) 589

Note: The number of positioned nucleosomes at the Samd4 locus for ESCs is shown

in the right column.
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4 CONCLUSIONS

We have described a binary-variable analysis and a Monte Carlo
simulation approach to analyze ambiguous nucleosome position

data from MNase-seq experiments. Nucleosome maps derived
from cell populations represent an overlay of nucleosome
configurations from single cells that typically display some

heterogeneity. The binary-variable approach analyzes the
source components to dissect this heterogeneity, whereas the
simulations provide an identification of distinct nucleosome con-
figurations. By using an MC approach, we were able to derive an

ensemble of nucleosome chains that can represent the experimen-
tal dataset as a sum of distinct configurations. Furthermore, we
derived an optimized nucleosome placement from the MC

ensemble by a simulated annealing method to derive a single
non-overlapping nucleosome configuration for ambiguous
MNase-seq data. Compared with previous approaches, it yields

a higher number of nucleosomes, which fits better the experimen-
tally determined nucleosome densities. The combination of these
approaches offers a comprehensive view on possible nucleosome

positions in cell ensembles and accounts for the incompatibility
of mutually overlapping nucleosome configurations.
By applying our novel methodology to an experimental

dataset, we (i) revealed different nucleosome positioning patterns

between the three mouse cell types ESCs, MEFs and NPCs; (ii)
derived the relative occlusion of transcription factor binding sites
by nucleosomes in clusters of overlapping peaks; and (iii) intro-

duced a stringency descriptor to quantify the flexibility of
nucleosome positioning. This was applied to mobile nucleosome
hot spots from regions of low stringency values that differed

between the three cell lines in terms of transcription factor bind-
ing site accessibility. Thus, our method identifies biologically
relevant nucleosome translocations at functional genomic elem-
ents. It can be applied to the increasing number of experimental

nucleosome occupancy datasets to extract important information
for the functional analysis of nucleosome positions and their
translocation that cannot be obtained easily with existing tech-

niques. In particular, we consider it as crucial to break down the
ensemble average data into specific configurations that each rep-
resents the genome organization of a single cell. This is essential

to further dissect nucleosome translocation changes or to evalu-
ate the spatial folding of a given locus in meaningful manner.
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Figure S1: Comparison of the occupancy function from MNase-seq experiments (red curve) and 
simulation procedure (black curve). Simulation was performed at a constant temperature of 293 K and 
without a chemical potential. 
 
 

 

 
Figure S2: Nucleosome configurations (red filled rectangles) for three differentiation states of mouse 
cells, as in Fig. 4. Binding sites for different transcription factors are shown as colored ellipses. Next 
to the binding site the relative occlusion by nucleosomes is indicated. 



Parameter Value 

Start temperature 600 K  
End temperature 0.1 K  
Chemical potential –8.0  
Nucleosome size 147 bp  
Simulation steps 108  
Annealing steps 105  
Smoothing (standard deviation) 20 bp  

 
Table S1: Parameters of simulated annealing for the Samd4 locus. A value for the chemical potential 
was determined empirically: we used a small test data set in which we expected to find five positioned 
nucleosomes at the same time, and adjusted the chemical potential iteratively such that the average 
number of nucleosomes in the configurations coincided with the expected value. 
 
 

Synthetic nucleosome map 
(original number of nucleosomes) 

Parameters 

100 regularly spaced NRL=200 bp, reads per nucleosome = 20 (± 5), 

read length = 147 bp (± 10), shift per read = ± 5 bp 

 
100 regularly spaced; 50 phase shifted 100 regularly spaced nucleosomes, as above 

 
50 additional nucleosomes were shifted by NRL/2: 
NRL=400 bp (± 25), reads per nucleosome = 25 (± 5), 
read length = 147 bp (± 10), shift per read = ± 5 bp 
 

150 randomly positioned NRL=random,  reads per nucleosome = 20 (± 5), 
read length = 147 bp (± 10), shift per read = ± 5 bp 
 

100 regularly spaced, 10 removed, 50 
randomly positioned 

nucleR-parameters: wp.num=100, wp.del=10, wp.var=20, 
fuz.num=50, fuz.var=50, max.cover=20, nuc.len=147, 
lin.len=20 
 

100 regularly spaced 10 removed, 100 
randomly positioned 

nucleR-parameters: wp.num=100, wp.del=10, wp.var=20, 
fuz.num=100, fuz.var=50, max.cover=20, nuc.len=147, 
lin.len=20 

Table S2: Parameters for the generation of synthetic nucleosome maps. NRL = Nucleosomal Repeat 
Length. 




